
g03 – Multivariate Methods g03aac

nag mv prin comp (g03aac)

1. Purpose

nag mv prin comp (g03aac) performs a principal component analysis on a data matrix; both the
principal component loadings and the principal component scores are returned.

2. Specification

#include <nag.h>
#include <nagg03.h>

void nag_mv_prin_comp(Nag_PrinCompMat pcmatrix, Nag_PrinCompScores scores,
Integer n, Integer m, double x[], Integer tdx, Integer isx[],
double s[], double wt[], Integer nvar, double e[], Integer tde,
double p[], Integer tdp, double v[], Integer tdv, NagError *fail)

3. Description

Let X be an n by p data matrix of n observations on p variables x1, x2, . . . , xp and let the p by p
variance-covariance matrix of x1, x2, . . . , xp be S. A vector a1 of length p is found such that:

aT
1 Sa1 is maximized subject to aT

1 a1 = 1.

The variable z1 =
∑p

i=1 a1ixi is known as the first principal component and gives the linear
combination of the variables that gives the maximum variation. A second principal component,
z2 =

∑p
i=1 a2ixi, is found such that:

aT
2 Sa2 is maximized subject to aT

2 a2 = 1 and aT
2 a1 = 0.

This gives the linear combination of variables that is orthogonal to the first principal component
that gives the maximum variation. Further principal components are derived in a similar way.

The vectors a1, a2, . . . , ap, are the eigenvectors of the matrix S and associated with each eigenvector
is the eigenvalue, λ2

i . The value of λ2
i /

∑
λ2

i gives the proportion of variation explained by the ith
principal component. Alternatively, the ai’s can be considered as the right singular vectors in a
singular value decomposition with singular values λi of the data matrix centred about its mean and
scaled by 1/

√
(n − 1), Xs. This latter approach is used in nag mv prin comp, with

Xs = V ΛP ′

where Λ is a diagonal matrix with elements λi, P ′ is the p by p matrix with columns ai and V is
an n by p matrix with V ′V = I, which gives the principal component scores.

Principal component analysis is often used to reduce the dimension of a data set, replacing a large
number of correlated variables with a smaller number of orthogonal variables that still contain most
of the information in the original data set.

The choice of the number of dimensions required is usually based on the amount of variation
accounted for by the leading principal components. If k principal components are selected, then a
test of the equality of the remaining p − k eigenvalues is

(n − (2p + 5)/6)

{
−

p∑
i=k+1

log(λ2
i ) + (p − k) log

(
p∑

i=k+1

λ2
i /(p − k)

)}

which has, asymptotically, a χ2 distribution with 1
2 (p − k − 1)(p − k + 2) degrees of freedom.

Equality of the remaining eigenvalues indicates that if any more principal components are to be
considered then they all should be considered.

Instead of the variance-covariance matrix the correlation matrix, the sums of squares and cross-
products matrix or a standardised sums of squares and cross-products matrix may be used. In

[NP3275/5/pdf] 3.g03aac.1



nag mv prin comp NAG C Library Manual

the last case S is replaced by σ−1/2Sσ−1/2 for a diagonal matrix σ with positive elements. If the
correlation matrix is used, the χ2 approximation for the statistic given above is not valid.

The principal component scores, F , are the values of the principal component variables for the
observations. These can be standardised so that the variance of these scores for each principal
component is 1.0 or equal to the corresponding eigenvalue.

Weights can be used with the analysis, in which case the matrix X is first centred about the
weighted means then each row is scaled by an amount √

wi, where wi is the weight for the ith
observation.

4. Parameters

pcmatrix
Input: indicates for which type of matrix the principal component analysis is to be carried
out.

If pcmatrix = Nag MatCorrelation, then it is for the correlation matrix.

If pcmatrix = Nag MatStandardised, then it is for the standardised matrix, with
standardisations given by s.

If pcmatrix = Nag MatSumSq, then it is for the sums of squares and cross-products
matrix.

If pcmatrix = Nag MatVarCovar, then it is for the variance-covariance matrix.
Constraint: pcmatrix = Nag MatCorrelation, Nag MatStandardised, Nag MatSumSq or
Nag MatVarCovar.

scores
Input: specifies the type of principal component scores to be used.

If scores = Nag ScoresStand, then the principal component scores are standardised so
that F ′F = I, i.e., F = XsPΛ−1 = V .

If scores = Nag ScoresNotStand, then the principal component scores are
unstandardised, i.e., F = XsP = V Λ.

If scores = Nag ScoresUnitVar, then the principal component scores are standardised
so that they have unit variance.

If scores = Nag ScoresEigenval, then the principal component scores are standardised
so that they have variance equal to the corresponding eigenvalue.

Constraint: scores = Nag ScoresStand, Nag ScoresNotStand, Nag ScoresUnitVar, or
Nag ScoresEigenval.

n
Input: the number of observations, n.
Constraint: n ≥ 2.

m
Input: the number of variables in the data matrix, m.
Constraint: m ≥ 1.

x[n][tdx]
Input: x[i− 1][j − 1] must contain the ith observation for the jth variable, for i = 1, 2, . . . , n;
j = 1, 2, . . . , m.

tdx
Input: the last dimension of the array x as declared in the calling program.
Constraint: tdx ≥ m.

isx[m]
Input: isx[j − 1] indicates whether or not the jth variable is to be included in the analysis.
If isx[j−1] > 0, then the variable contained in the jth column of x is included in the principal
component analysis, for j = 1, 2, . . . , m.
Constraint: isx[j − 1] > 0 for nvar values of j.
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s[m]
Input: the standardisations to be used, if any.
If pcmatrix = Nag MatStandardised, then the first m elements of s must contain the
standardisation coefficients, the diagonal elements of σ.
Constraint: if isx[j − 1] > 0, then s[j − 1] > 0.0, for j = 1, 2, . . . , m.
Output: if pcmatrix = Nag MatStandardised, then s is unchanged on exit.
If pcmatrix = Nag MatCorrelation, then s contains the variances of the selected variables.
s[j − 1] contains the variance of the variable in the jth column of x if isx[j − 1] > 0.
If pcmatrix = Nag MatSumSq or Nag MatVarCovar, then s is not referenced.

wt[n]
Input: the elements of wt must contain the weights to be used in the principal component
analysis. The effective number of observations is the sum of the weights.
Constraint: wt[i − 1] ≥ 0.0, for i = 1, 2, . . . , n and the sum of weights ≥ nvar+1.
If wt[i − 1] = 0.0 then the ith observation is not included in the analysis.
Note: If wt is set to the null pointer NULL, i.e., (double *)0, then wt is not referenced and
the effective number of observations is n.

nvar
Input: the number of variables in the principal component analysis, p.
Constraint: 1 ≤ nvar ≤ min(n−1, m).

e[nvar][tde]
Output: the statistics of the principal component analysis.
e[i− 1][0], the eigenvalues associated with the ith principal component, λ2

i , for i = 1, 2, . . . , p.
e[i − 1][1], the proportion of variation explained by the ith principal component, for i =
1, 2, . . . , p.
e[i−1][2], the cumulative proportion of variation explained by the first i principal components,
for i = 1, 2, . . . , p.
e[i − 1][3], the χ2 statistics, for i = 1, 2, . . . , p.
e[i − 1][4], the degrees of freedom for the χ2 statistics, for i = 1, 2, . . . , p.
If pcmatrix �= Nag MatCorrelation, then e[i − 1][5] contains the significance level for the χ2

statistic, for i = 1, 2, . . . , p.
If pcmatrix = Nag MatCorrelation, then e[i − 1][5] is returned as zero.

tde
Input: the last dimension of the array e as declared in the calling program.
Constraint: tde ≥ 6.

p[nvar][tdp]
Output: the first nvar columns of p contain the principal component loadings, ai. The jth
column of p contains the nvar coefficients for the jth principal component.

tdp
Input: the last dimension of the array p as declared in the calling program.
Constraint: tdp ≥ nvar.

v[n][tdv]
Output: the first nvar columns of v contain the principal component scores. The jth column
of v contains the n scores for the jth principal component.
If weights are supplied in the array wt, then any rows for which wt[i − 1] is zero will be set
to zero.

tdv
Input: the last dimension of the array v as declared in the calling program.
Constraint: tdv ≥ nvar.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.
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5. Error Indications and Warnings

NE BAD PARAM
On entry, parameter pcmatrix had an illegal value.
On entry, parameter scores had an illegal value.

NE INT ARG LT
On entry, m must not be less than 1: m = 〈value〉.
On entry, n must not be less than 2: n = 〈value〉.
On entry, nvar must not be less than 1: nvar = 〈value〉.
On entry, tde must not be less than 6: tde = 〈value〉.

NE 2 INT ARG LT
On entry, tdx = 〈value〉 while m = 〈value〉. These parameters must satisfy tdx ≥ m.
On entry, tdv = 〈value〉 while nvar = 〈value〉. These parameters must satisfy tdv ≥ nvar.
On entry, tdp = 〈value〉 while nvar = 〈value〉. These parameters must satisfy tdp ≥ nvar.

NE 2 INT ARG GT
On entry, nvar = 〈value〉 while m = 〈value〉. These parameters must satisfy nvar ≤ m.

NE 2 INT ARG GE
On entry, nvar = 〈value〉 while n = 〈value〉. These parameters must satisfy nvar < n.

NE NEG WEIGHT ELEMENT
On entry, wt[〈value〉] = 〈value〉.
Constraint: when referenced, all elements of wt must be non-negative.

NE VAR INCL INDICATED
The number of variables, nvar in the analysis = 〈value〉, while the number of variables included
in the analysis via array isx = 〈value〉.
Constraint: these two numbers must be the same.

NE VAR INCL STANDARD
On entry, the standardisation element s[〈value〉] = 〈value〉, while the variable to be included
isx[〈value〉] = 〈value〉.
Constraint: when a variable is to included, the standardisation element must be positive.

NE OBSERV LT VAR
With weighted data, the effective number of observations given by the sum of weights =
〈value〉, while the number of variables included in the analysis, nvar = 〈value〉.
Constraint: effective number of observations > nvar + 1.

NE SVD NOT CONV
The singular value decomposition has failed to converge.
This is an unlikely error exit.

NE ZERO EIGVALS
All eigenvalues/singular values are zero.
This will be caused by all the variables being constant.

NE ALLOC FAIL
Memory allocation failed.

NE INTERNAL ERROR
An internal error has occurred in this function.
Check the function call and any array sizes. If the call is correct then please consult NAG for
assistance.

6. Further Comments

6.1. Accuracy

As nag mv prin comp uses a singular value decomposition of the data matrix, it will be less affected
by ill-conditioned problems than traditional methods using the eigenvalue decomposition of the
variance-covariance matrix.
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7. See Also

None.

8. Example

A data set is taken from Cooley and Lohnes (1971), it consists of ten observations on three variables.
The unweighted principal components based on the variance-covariance matrix are computed and
unstandardised principal component scores requested.

8.1. Program Text

/* nag_mv_prin_comp Example Program.
*
* Copyright 1998 Numerical Algorithms Group.
*
* Mark 5, 1998.
*
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nagg03.h>

#define NMAX 12
#define MMAX 3

main()
{
double p[MMAX][MMAX] ,s[MMAX];
double e[MMAX][6];
double v[NMAX][MMAX], x[NMAX][MMAX], wt[NMAX];
double *wtptr=0;

Integer isx[MMAX];
Integer nvar,tdx=MMAX, tde=6, tdp=MMAX, tdv=MMAX;
Integer i, j, m, n;

Nag_PrinCompMat pcmatrix;
Nag_PrinCompScores scores;

char weight[2], matrix[2], std[2];

Vprintf("g03aac Example Program Results\n\n");

/* Skip heading in data file */
Vscanf("%*[^\n]");

Vscanf("%s",matrix);
Vscanf("%s",std);
Vscanf("%s",weight);
Vscanf("%ld",&n);
Vscanf("%ld",&m);

if (*matrix == ’C’)
pcmatrix = Nag_MatCorrelation;

else if (*matrix == ’S’)
pcmatrix = Nag_MatStandardised;
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else if (*matrix == ’U’)
pcmatrix = Nag_MatSumSq;

else
pcmatrix = Nag_MatVarCovar;

if (*std == ’S’)
scores = Nag_ScoresStand;

else if (*std == ’U’)
scores = Nag_ScoresNotStand;

else if (*std == ’Z’)
scores = Nag_ScoresUnitVar;

else
scores = Nag_ScoresEigenval;

if (n <= NMAX && m <= MMAX)
{
if (*weight == ’U’)
{
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)

Vscanf("%lf",&x[i][j]);
}

}
else
{
for (i = 0; i < n; ++i)
{
for (j = 0; j < m; ++j)

Vscanf("%lf",&x[i][j]);
Vscanf("%lf",&wt[i]);

}
wtptr = wt;

}
for (j = 0; j < m; ++j)
{
Vscanf("%ld",&isx[j]);

}
Vscanf("%ld",&nvar);
if (pcmatrix == Nag_MatStandardised)
{
for (j = 0; j < m; ++j)
Vscanf("%lf",&s[j]);

}

g03aac(pcmatrix, scores, n, m, (double *)x, tdx, isx, s, wtptr, nvar,
(double *)e, tde, (double *)p, tdp, (double *)v, tdv, NAGERR_DEFAULT);

Vprintf("Eigenvalues Percentage Cumulative Chisq DF Sig\n");
Vprintf(" variation variation\n\n");
for (i = 0; i < nvar; ++i)
{
for (j = 0; j < 6; ++j)
Vprintf("%11.4f",e[i][j]);

Vprintf("\n");
}

Vprintf("\nEigenvalues \n\n");
for (i = 0; i < nvar; ++i)
{
for (j = 0; j < nvar; ++j)
Vprintf("%9.4f",p[i][j]);

Vprintf("\n");
}

Vprintf("\nPrincipal component scores \n\n");
for (i = 0; i < n; ++i)
{
Vprintf("%2ld", i+1);
for (j = 0; j < nvar; ++j)
Vprintf("%9.3f", v[i][j]);

Vprintf("\n");
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}
exit(EXIT_SUCCESS);

}
else

{
Vprintf("Incorrect input value of n or m.\n");
exit(EXIT_FAILURE);

}
}

8.2. Program Data

g03aac Example Program Data
V E U 10 3
7.0 4.0 3.0
4.0 1.0 8.0
6.0 3.0 5.0
8.0 6.0 1.0
8.0 5.0 7.0
7.0 2.0 9.0
5.0 3.0 3.0
9.0 5.0 8.0
7.0 4.0 5.0
8.0 2.0 2.0
1 1 1 3

8.3. Program Results

g03aac Example Program Results

Eigenvalues Percentage Cumulative Chisq DF Sig
variation variation

8.2739 0.6515 0.6515 8.6127 5.0000 0.1255
3.6761 0.2895 0.9410 4.1183 2.0000 0.1276
0.7499 0.0590 1.0000 0.0000 0.0000 0.0000

Eigenvalues

0.1376 0.6990 0.7017
0.2505 0.6609 -0.7075

-0.9583 0.2731 -0.0842

Principal component scores

1 2.151 -0.173 -0.107
2 -3.804 -2.887 -0.510
3 -0.153 -0.987 -0.269
4 4.707 1.302 -0.652
5 -1.294 2.279 -0.449
6 -4.099 0.144 0.803
7 1.626 -2.232 -0.803
8 -2.114 3.251 0.168
9 0.235 0.373 -0.275

10 2.746 -1.069 2.094

[NP3275/5/pdf] 3.g03aac.7


	C Library, Mark 7
	Introduction
	Essential Introduction
	Mark 7 News
	Library Contents

	Indexes
	Keywords in Context
	GAMS Index

	Implementation-specific Details for Users
	a00 - Library Identification
	a02 - Complex Arithmetic
	c02 - Zeros of Polynomials
	c05 - Roots of One or More Transcendental Equations
	c06 - Fourier Transforms
	d01 - Quadrature
	d02 - Ordinary Differential Equations
	d03 - Partial Differential Equations
	d06 - Mesh Generation
	e01 - Interpolation
	e02 - Curve and Surface Fitting
	e04 - Minimizing or Maximizing a Function
	f - Linear Algebra
	f01 - Matrix Factorizations
	f02 - Eigenvalues and Eigenvectors
	f03 - Determinants
	f04 - Simultaneous Linear Equations
	f06 - Linear Algebra Support Routines
	f07 - Linear Equations (LAPACK)
	f08 - Least-squares and Eigenvalue Problems (LAPACK)
	f11 - Sparse Linear Algebra
	f16 - NAG Interface to BLAS
	g01 - Simple Calculations on Statistical Data
	g02 - Correlation and Regression Analysis
	g03 - Multivariate Methods
	g04 - Analysis of Variance
	g05 - Random Number Generators
	g07 - Univariate Estimation
	g08 - Nonparametric Statistics
	g10 - Smoothing in Statistics
	g11 - Contingency Table Analysis
	g12 - Survival Analysis
	g13 - Time Series Analysis
	h - Operations Research
	m01 - Sorting
	s - Approximations of Special Functions
	x01 - Mathematical Constants
	x02 - Machine Constants
	x04 - Input/Output Utilities


